skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tripathy, Vikrant"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate simulation of electronic excited states of large chromophores is often difficult due to the computationally expensive nature of existing methods. Common approximations such as fragmentation methods that are routinely applied to ground-state calculations of large molecules are not easily applicable to excited states due to the delocalized nature of electronic excitations in most practical chromophores. Thus, special techniques specific to excited states are needed. Δ-SCF methods are one such approximation that treats excited states in a manner analogous to that for ground-state calculations, accelerating the simulation of excited states. In this work, we employed the popular initial maximum overlap method (IMOM) to avoid the variational collapse of the electronic excited state orbitals to the ground state. We demonstrate that it is possible to obtain emission energies from the first singlet (S1) excited state of many thousands of dye molecules without any external intervention. Spin correction was found to be necessary to obtain accurate excitation and emission energies. Using thousands of dye-like chromophores and various solvents (12,318 combinations), we show that the spin-corrected initial maximum overlap method accurately predicts emission maxima with a mean absolute error of only 0.27 eV. We further improved the predictive accuracy using linear fit-based corrections from individual dye classes to achieve an impressive performance of 0.17 eV. Additionally, we demonstrate that IMOM spin density can be used to identify the dye class of chromophores, enabling improved prediction accuracy for complex dye molecules, such as dyads (chromophores containing moieties from two different dye classes). Finally, the convergence behavior of IMOM excited state SCF calculations is analyzed briefly to identify the chemical space, where IMOM is more likely to fail. 
    more » « less
  2. We used a semimanual approach to mine optical data from the literature using expert annotations. We identify 47 dye candidates for emissive SMILES materials. This workflow has promise for the design of other materials. 
    more » « less
  3. Abstract We report the application of our fragment‐based quantum chemistry model MIM (Molecules‐In‐Molecules) with electrostatic embedding. The method is termed “EE‐MIM (ElectrostaticallyEmbeddedMolecules‐In‐Molecules)” and accounts for the missing electrostatic interactions in the subsystems resulting from fragmentation. Point charges placed at the atomic positions are used to represent the interaction of each subsystem with the rest of the molecule with minimal increase in the computational cost. We have carefully calibrated this model on a range of different sizes of clusters containing up to 57 water molecules. The fragmentation methods have been applied with the goal of reproducing the unfragmented total energy at the MP2/6‐311G(d,p) level. Comparative analysis has been carried out between MIM and EE‐MIM to gauge the impact of electrostatic embedding. Performance of several different parameters such as the type of charge and levels of fragmentation are analyzed for the prediction of absolute energies. The use of background charges in subsystem calculations improves the performance of both one‐ and two‐layer MIM while it is noticeably important in the case of one‐layer MIM. Embedded charges for two‐layer MIM are obtained from a full system calculation at the low‐level. For one‐layer MIM, in the absence of a full system calculation, two different types of embedded charges, namely, Geometry dependent (GD) and geometry independent (GI) charges, are used. A self‐consistent procedure is employed to obtain GD charges. We have further tested our method on challenging charged systems with stronger intermolecular interactions, namely, protonated ammonia clusters (containing up to 30 ammonia molecules). The observations are similar to water clusters with improved performance using embedded charges. Overall, the performance of NPA charges as embedded charges is found to be the best. 
    more » « less
  4. Abstract A new strategy for the synthesis of highly versatile cyclobutylboronates via the photosensitized [2+2]‐cycloaddition of alkenylboronates and alkenes is presented. The process is mechanistically different from other processes in that energy transfer occurs with the alkenylboronate as opposed to the other alkene. This strategy allows for the synthesis of an array of diverse cyclobutylboronates. The conversion of these adducts to other compounds as well as their utility in the synthesis of melicodenine C is demonstrated. 
    more » « less
  5. Abstract A new strategy for the synthesis of highly versatile cyclobutylboronates via the photosensitized [2+2]‐cycloaddition of alkenylboronates and alkenes is presented. The process is mechanistically different from other processes in that energy transfer occurs with the alkenylboronate as opposed to the other alkene. This strategy allows for the synthesis of an array of diverse cyclobutylboronates. The conversion of these adducts to other compounds as well as their utility in the synthesis of melicodenine C is demonstrated. 
    more » « less